Economic Analysis for Adding Newborn Screening for GAMT deficiency

Washington State Board of Health

September 8, 2023

Background

The Board creates a technical advisory committee (TAC), which then reviews available information and research to evaluate a candidate condition and compare to a set of criteria established by the Board

Criterion #5:

- Cost-benefit/Cost-effectiveness: The outcomes outweigh the costs of screening
- All outcomes, both positive and negative, need to be considered for analysis

Criterion #5

Important considerations for economic analysis:

- The prevalence of the condition among newborns
- The positive and negative predictive values of the screening and diagnostic tests
- Variability of clinical presentation by those who have the condition
- The impact of ambiguous results: for example, the impact on families and caregivers
- Adverse effects of screening

Guanidinoacetate methyltransferase (GAMT) deficiency

- A rare, autosomal recessive disorder
- Inhibits the production of creatine, along with elevated levels of guanidinoacetate (GUAC)
- Leads to disability:
 - Intellectual disability, seizures, motor defects
 - Can be severe or moderate
- Signs usually do not present until at least 3 months of age: newborns asymptomatic

Overview of Benefit-Cost Analysis

- Decision tree construction: comparison of the current, No Screening Model and a new, Screening Model
- Data:
 - Existing, published literature
 - States that currently screen for GAMT deficiency
 - Expert, clinical opinion
- Sensitivity Analysis: comparing to higher and lower parameters to challenge the model

Decision Tree Model

No Screening Model

No Screening Model

No Screening Model

No Screening vs. Screening

No Screening	Severe Disability Moderate Disability No Disability Early tx costs Late tx (severe) costs Late tx (moderate) costs Total costs	0.0385 0.0342 0.0083 ¢00.05 \$68,495.18 \$55,443.93 \$124,032.96
Screen	Severe disabilty Moderate Disability No Disability Early costs	0.00021 0.00019 0.0806 \$1,045.88
	Late tx (severe) costs Late tx (moderate) costs Total costs	\$376.05 \$304.40 \$1,726.55

Estimated Treatment Costs

 Early ID costs (Years 0-11)
 \$12.976.50

 Late ID costs, Severe (Years 0-11)
 \$1,779,606.10

 Late ID costs, Infoderate (Tears 0-11)
 \$1,371,471.50

Shift: Benefits vs. Costs

Cost per baby: **\$0.99** Includes startup lab costs, laboratory staffing and supplies

Costs			
Costs		Cost of screening	\$82,008.19
		Cost of false positives	\$2,178.75
		Total costs	\$84,186.94
Diagnostic testing	· · · ·	J. I. I. I.	1 1
Creatine/GAA anlysis (urine) \$200.00	A test of the urine or blood pl	asma may be done to see if there are high le	evels of guanidinoacetate
Molecular genetic testinghighlowaverage	A diagnosis can be confirmed	by molecular genetic testing. These tests inv	olve studying the GAMT gene

low average \$2,000.00 \$100.00 \$1,050.00

Cost of diagnostics:

\$1,250.00

Shift: Benefits vs. Costs

Benefits	Shift in early tx costs Shift in late tx (severe) costs Shift in late tx (moderate) costs	- <mark>\$952.03</mark> \$68,119.13 \$55,139.53
	Total benefits	\$122,306.64
Costs	Cost of screening Cost of false positives	\$82,008.19 \$2,178.75
_	Total costs	\$84,186.94

Benefi	it/Cost ratio	1.453	
Net Be	enefit	\$38,119.70	

Sensitivity Analysis

Parameter	base
birthrate	83,000
birth prevalence - 1 in:	1,024,654.67
% w/ GAMT family hx	0.0893
sensitivity	99.50%
specificity	99.9979%
tx cost, early ID	\$12 <i>,</i> 976.50
tx cost, late ID, severe	\$1,779,606.10
tx cost, late ID, moderate	\$1,571,471.30
cost of NBS test	\$0.99
cost of false +	\$1,250.00

Sensitivity Analysis

			B/C ratio		
	B/C ratio swing		1.453		B/C ratio swing
Parameter		low/conservative estimate	base	high/liberal estimate	
birthrate	1.453	62,250	83,000	103,750	1.453
birth prevalence - 1 in:	1.063	1,400,000	1,024,654.67	273,902	5.435
	1.490	0.0025	0.0055	0.555	1.001
sensitivity	1.421	97.50%	99.50%	100%	1.461
specificity	0.422	99.80%	99.9979%	100.00%	1.462
tx cost, early ID	1.458	\$6,488.25	\$12,976.50	\$25,953.00	1.441
tx cost, late ID, severe	1.048	\$889,803.05	\$1,779,606.10	\$3,559,212.20	2.262
tx cost, late ID, moderate	1.125	\$785,735.65	\$1,571,471.30	\$3,142,942.60	2.108
cost of NBS test	2.827	\$0.50	\$0.99	\$1.48	0.978
cost of false +	1.472	\$625.00	\$1,250.00	\$5,000.00	1.348

Sensitivity Analysis

			B/C ratio		
	B/C ratio swing		1.453		B/C ratio swing
Parameter		low/conservative estimate	base	high/liberal estimate	
birthrate	1.453	62,250	83,000	103,750	1.453
birth prevalence - 1 in:	1.063	1,400,000	1,024,654.67	273,902	5.435
% w/ GAMT family hx	1.496	0.0625	0.0893	0.333	1.061
sensitivity	1.421	97.50%	99.50%	100%	1.461
specificity	0.422	99.80%	99.9979%	100.00%	1.462
tx cost, early ID	1.458	\$6,488.25	\$12,976.50	\$25,953.00	1.441
tx cost, late ID, severe	1.048	\$889,803.05	\$1,779,606.10	\$3,559,212.20	2.262
tx cost, late ID, moderate	1.125	\$785,735.65	\$1,571,471.30	\$3,142,942.60	2.108
cost of NBS test	2.827	Ş0.50	Ş0.99	Ş1.48	0.978
cost of false +	1.472	\$625.00	\$1,250.00	\$5,000.00	1.348

Criterion #5

Important considerations for economic analysis:

- The prevalence of the condition among newborns
- The positive and negative predictive values of the screening and diagnostic tests
- Variability of clinical presentation by those who have the condition
- The impact of ambiguous results: for example, the impact on families and caregivers
- Adverse effects of screening

Final Notes

Literature suggests no false negatives

The false positive rate is likely to be low

The assumption of compliance with treatment

Acknowledgements

Thank you to:

- Sarah Bradley, MS, CGC, New York State Newborn Screening Program
- Kimberly Hart, MS, Utah Newborn Screening Program
- Anna Scott, PhD, Seattle Children's
- Emily Shelkowitz, MD, Seattle Children's
- WA Newborn Screening

Contraction of State