Economic Analysis for Adding Newborn Screening for Arginase-1 deficiency

Washington State Board of Health

September 8, 2023

Background

The Board creates a technical advisory committee (TAC), which then reviews available information and research to evaluate a candidate condition and compare to a set of criteria established by the Board

Criterion #5:

- Cost-benefit/Cost-effectiveness: The outcomes outweigh the costs of screening
- All outcomes, both positive and negative, need to be considered for analysis

Criterion #5

Important considerations for economic analysis:

- The prevalence of the condition among newborns
- The positive and negative predictive values of the screening and diagnostic tests
- Variability of clinical presentation by those who have the condition
- The impact of ambiguous results: for example, the impact on families and caregivers
- Adverse effects of screening

Arginase-1 deficiency (ARG1-D)

- Rare, inherited disorder part of the urea cycle
- Arginase enzyme is lacking
 - Usually assists with the removal of nitrogen
 - Results in the formation of arginine and ammonia
- Leads to disability
 - Intellectual and developmental delay
 - Spasticity of the lower limbs
 - Seizures
 - Severe hyperammonemia can result in liver transplantation
- Symptoms do not appear until 1-3 years old
- 34 states current screen for ARG1-D in their newborn screening panels

Overview of Benefit-Cost Analysis

- Decision tree construction: comparison of the current, No Screening Model and a new, Screening Model
- Data:
 - Existing, published literature
 - States that currently screen for ARG1-D
 - Expert, clinical opinion
- Sensitivity Analysis: comparing to higher and lower parameters to challenge the model

Decision Tree Model

No Screening Model

No Screening Model

No Screening Model

No Screening vs. Screening

Estimated Treatment Costs

Early tx cost per baby (10 Years) \$1,503,509.80

Late tx cost per baby (10 Years)

\$1,637,128.67

Shifts: Benefits vs. Costs

Benefits	Deaths averted	0.00750		
	LTD averted	0.0542		
	Value of LTD averted	\$81,259,71		
	Value of a life	\$11,600,000,00		
	Value of lives saved	\$86,981.13		
	Less tx costs	\$9,270.54		
	Total benefits	\$177,511.38		

Costs		
Costs	costs of screening	\$82,008.19
	costs of false +	\$5,255.13
	Total costs	\$87,263.32

Cost per baby: **\$0.99** Includes startup lab costs, laboratory staffing and supplies

Costs

	high	low		average	
	\$499.0	00	\$202.00	\$350.50	
	\$200.0	00	\$100.00	\$150.00	
				\$250.25	Avg cost
DNA seq	\$990.0	00	\$710.00	\$850.00	
Single gene for ARG1 \$1,000.00					
				\$925.00	Avg cost

Shift: Benefits vs. Costs

Benefits	Deaths averted	0.00750
	LTD averted	0.0542
	Value of LTD averted	\$81,259.71
	Value of a life	\$11,600,000.00
	Value of lives saved	\$86,981.13
	Loss tu coste	¢0,270.54
	Total benefits	\$177,511.38
Costs	costs of screening	\$82,008.19
	costs of false +	\$5,255.13
	Total costs	\$87,263.32

benefit/cost ratio	2.03
Net benefit	\$90,248.06

Sensitivity Analysis

Parameter	base		
Birthrate	83,000		
birth prevalence - 1 in:	1000000		
% w/ ARG1-D family hx	0.159090909		
sensitivity	99.50%		
specificity	99.99%		
treatment cost, late ID	\$1,637,129		
value of a life	\$11,600,000.00		
cost of NBS	\$0.99		
cost of false +	\$587.63		

Sensitivity Analysis

Parameter	B/C ratio swing	low/conservative estimate	B/C ratio 2.03 base	high/liberal estimate	B/C ratio swing
birth prevalence - 1 in:	1.87	108800	1000000	54065.67	37.62
sensitivity	1.99	97.50%	99.50%	100%	2.05
specificity	0.99	99.80%	99.99%	100%	2.05
treatment cost, late ID	1.38	\$818,564.33	\$1,637,129	\$3,274,257.33	3.34
value of a life	1.86	\$9,600,000.00	\$11,600,000.00	\$13,600,000.00	2.21
cost of NBS	3.83	\$0.50	\$0.99	\$1.48	1.39
cost of false +	2.1	\$293.81	\$587.63	\$5,876.25	1.32

Sensitivity Analysis

	B/C ratio swing		B/C ratio 2.03		B/C ratio swing
Parameter		low/conservative estimate	base	high/liberal estimate	
Birthrate	2.03	62250	83,000	103750	2.03
birth prevalence - 1 in:	1.87	108800	1000000	54065.67	37.62
% w/ ARG1-D family hx	2.42	0	0.159090909	0.33	1.62
sensitivity	1.99	97.50%	99.50%	100%	2.05
cnocificity	0.00	00.20%	00.00%	100%	2.16
treatment cost, late ID	1.38	\$818,564.33	\$1,637,129	\$3,274,257.33	3.34
value of a fire	1.00	÷5,000,000.00	911,000,000.00	\$15,000,000.00	2.21
cost of NBS	3.83	\$0.50	\$0.99	\$1.48	1.39
cost of false +	2.1	\$293.81	\$587.63	\$5,876.25	1.32

Criterion #5

- Important considerations for economic analysis:
 - The prevalence of the condition among newborns
 - The positive and negative predictive values of the screening and diagnostic tests
 - Variability of clinical presentation by those who have the condition
 - The impact of ambiguous results: for example, the impact on families and caregivers
 - Adverse effects of screening

Final Notes

Current data suggests no false negatives

Treatment costs can vary

Babies asymptomatic until toddlerhood – candidate for newborn screening

Acknowledgements

Thank you to:

- Greg Bonn, MT (ASCP), Colorado State Public Health and Environment Laboratory
- Patrice K. Held, PhD FACMG, Oregon State Public Health Labrotory
- Anna Scott, PhD, Seattle Children's
- Emily Shelkowitz, MD, Seattle Children's
- WA State Newborn Screening Program

